
- 1) What is the slope of the line y = 2x + 3?
- 2) What is the slope of the following graph?



3) What is the slope of the line that passes through the points (3, 6) and (-1, 4)?

4) Graph the line 2x + y = -3.



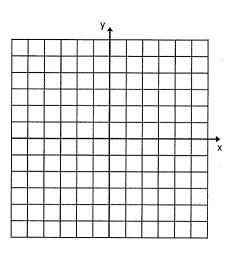
5) Identify the slope and the coordinates of a point on the line of the equation y + 5 = -2(x - 4).

6) Write an equation in the form  $y - y_1 = m(x - x_1)$  (slope/point form) for the graph of a linear function that passes through the points (1, 4) and (3, 7).

7) Write the equation of the line in the form y = mx + b (slope/intercept form) that has a y-intercept of 5 and is perpendicular to the line with an equation y = 2x + 3.

8) Rewrite the equation 3x + 2y - 6 = 0 into the form y = mx + b (slope/intercept form).

1) Is the point (2,3) a solution to the system below? (Why or why not?)


$$3x - 2y = 0$$

$$x = y - 1$$

2) Solve the following system using the **Graphic Method**.

$$y = 2x + 2$$

$$x + y = 5$$



Solution is \_\_\_\_\_

3) Solve the following system using the **Substitution Method**.

$$2x + 3y = 11$$

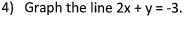
$$y = 2x + 1$$

Solution is \_\_\_\_\_

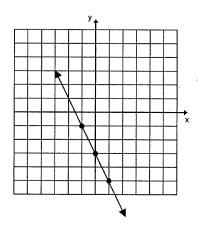
4) Solve the following system using the **Elimination Method**.

$$3x + 2y = 1$$
$$x - 3y = -7$$

5) How many solutions (none, infinite, one) does the system have?


a) 
$$y = 2x + 3$$
  
 $y = 2x - 3$ 

b) 
$$-2x + y = 4$$
  
  $4x - 2y = -8$ 


- 6) Word Problem: Write the linear system that would help you solve the problem. (Be sure to identify your variables with LET statements.) You do not need to solve the problem.
  - a) The perimeter of a rectangle is 150 cm. If the length is twice the width, find the length and width of the rectangle.
  - b) The cost of 2 adult tickets and 3 child tickets is \$35.00. The cost of 4 adult tickets and 1 child ticket is \$45.00. What is the price for the adult and the child tickets?

- 1) What is the slope of the line y = 2x + 3? Slope is 2
- 2) What is the slope of the following graph? Slope is  $-\frac{5}{2}$
- 3) What is the slope of the line that passes through the points (3, 6) and (-1, 4)?

Slope = 
$$\frac{6-4}{3-1} = \frac{2}{4} = \frac{1}{2}$$



$$y = -2x - 3$$
  
 $m = -2$  (Slope)  
 $b = -3$  (y-intercept)



- 5) Identify the slope and the coordinates of a point on the line of the equation y + 5 = -2(x 4). Slope is -2 Point is (4, -5)
- 6) Write an equation in the form  $y y_1 = m(x x_1)$  (slope/point form) for the graph of a linear function that passes through the points (1, 4) and (3, 7).

Slope = 
$$\frac{4-7}{1-3} = \frac{-3}{-2} = \frac{3}{2}$$
  $y-4 = \frac{3}{2}(x-1)$  OR  $y-7 = \frac{3}{2}(x-3)$ 

7) Write the equation of the line in the form y = mx + b (slope/intercept form) that has a y-intercept of 5 and is perpendicular to the line with an equation y = 2x + 3.

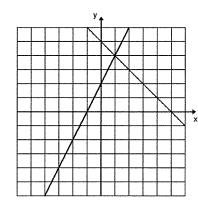
Slope is 
$$-\frac{1}{2}$$
 (perpendicular = use neg reciprocal of 2)  $y = -\frac{1}{2}x + 5$ 

8) Rewrite the equation 3x + 2y - 6 = 0 into the form y = mx + b (slope/intercept form).

$$2y = -3x + 6$$
  
 $y = -\frac{3}{2}x + \frac{6}{2}$   $y = -\frac{3}{2}x + 3$ 

1) Is the point (2,3) a solution to the system below? (Why or why not?)

$$3x - 2y = 0$$
 yes it is.  $3(2) - 2(3) = 0$   
  $x = y - 1$   $2 = 3 - 1$ 


$$3(2) - 2(3)$$
  
2 = 3 - 1

Works in both!

2) Solve the following system using the **Graphic Method**.

$$y = 2x + 2$$
  $y = 2x + 2$ 

$$x + y = 5$$
  $y = -1x + 5$ 



Solution is (1, 4)

3) Solve the following system using the **Substitution Method**.

$$2x + 3y = 11$$

$$y = 2x + 1$$

$$2x + 3(2x + 1) = 11$$

$$y = 2(1) + 1$$

$$2x + 6x + 3 = 11$$

$$y = 3$$

$$8x + 3 = 11$$

$$8x = 8$$

$$x = 1$$

4) Solve the following system using the **Elimination Method**.

$$3x + 2y = 1$$

$$3x + 2y = 1$$

$$3x + 2(2) = 1$$

$$y - 3y = -7$$

$$x - 3y = -7$$
  $x(-3)$   $\frac{-3x + 9y = 21}{44x + 32}$ 

$$3x + 4 = 1$$

$$\frac{11y = 22}{11y = 22}$$

$$3x = -3$$
 Solution (-1, 2)

$$x = -1$$

5) How many solutions (none, infinite, one) does the system have?

a) 
$$y = 2x + 3$$
 None (same slope, diff y-int)

$$y = 2x - 3$$

b) 
$$-2x + y = 4$$
  $y = 2x + 4$ 

$$4x - 2y = -8$$

$$-2y = -4x - 8$$

$$y = 2x + 4$$
 Infinite (both have same slope and y-int)

6) w = width 2w + 2l = 150

$$2a + 3c = 35$$

$$I = length$$
  $I = 2w$ 

$$4a + 1c = 45$$